

MU200 Series Programmable Logic Controller

Power Supply Product

Communication PS	Server Power Supply	🗌 Electric Power Supply 🔲 Medical Power Supply 📄 Industrial Microwave Power Supply
Display Power Supply	Photovoltaic (PV)	Energy Storage System Charging Pile component Guide Rail Power Supply
OA Power Supply	🗌 Flat Panel Power Supp	ly

Industrial Automation

Inverter	Servo System	Control System	Sensor	🔲 Internal Gear Pump
Industrial IOT	Elevator Integrated C	Controller	Engineering Vehicle	Controller

New Energy Vehicle & Rail Transit

🔲 Rail Transit Inverter	Motor Controller		PFC	Electric Compressor		Heating Managment System
Rail Transit Air Conditioning Controller			In-vehicle Integrated (Charging System		All-in-one High Voltage Integrated Driver
Intelligent equipm	ent					
Intelligent Digital Welding Machine			Industrial Microwave	Equipment		Intelligent Submersible Screw Pump Oil Recovery System
Smart Appliance E	Electronic Control					
Intelligent Sanitary War	re 🔲 Space Heating		Microwave Oven	Electromagnetic Heatin	ıg	Cold Chain
Heating Ventilation Ai	r Conditioner (HVAC)		Washing (Drying) Mac	chine		

Precision Connection

🗌 Flexible Flat Cable(FFC) 🔲 FPC

Varnished Wire

Shenzhen Megmeet Electrical Co.,Ltd

Add: 5th Floor, Block B, Unisplendour Information Harbor, Langshan Rd., Science&Technology Park, Nanshan District, Shenzhen, 518057, China

Add: 34th Floor, High-tech Zone Union Tower, No.63 Xuefu Road, Nanshan District, Shenzhen, 518057, China

Megmeet reserves the right to modify the technical parameters and appearance of the products in this catalogue without prior advice to the users. V.23.06

Coaxial Line

-----A New Generation of High Performance Small PLC

1900+

R&D Personnels

5700+

Workers

R&D Centers

Manufacturing Bases

8

About MEGMEET

Shenzhen Megmeet Electrical Co., Ltd.(Stock Code:002851) is a one-stop solution provider for the R&D, production, sales and services of hardware and software in electrical automation field, highlighting in power electronics and automatic control technology. Company's main business covers six parts: power supply products, industrial automation, new energy vehicle& rail transit, intelligent equipment, smart appliance electronic control and precision connection.

Our company has established a strong platform of R&D, manufacturing, marketing and service with more than 1900 R&D personnel and a total of more than 5700 employees. We have established R&D centers in Shenzhen City, Changsha City, Xi'an City, Wuhan City, Zhuzhou City, Hangzhou City, Taizhou City and Chengdu City; overseas research institutes in the United States, Germany, and Sweden; manufacturing centers in Zhuzhou City, Dongguan City, Heyuan City, Taizhou City, and Yiwu City; overseas factories in Thailand and India; overseas marketing station in the United States, Japan, Korea, Southeast Asia, India, Germany, Poland, Romania, Turkey, Sweden to provide quality service resources.

MEGMEET is committed to helping people achieve a more efficient use of electricity, creating a cleaner living environment, continuously improving production efficiency and creating a better life for human beings. Our company aspires to become a global first-class product and solution provider in the field of electrical control and energy saving.

Contents

Four Major Product Features	P01
Introduction of CPU Module Port	P07
Industrial Application and Solution	P08
Model of MU200 Series-PLC	P09
Dimension Specification	P16

MU200 Series

A New Generation of High-performance PLC

Major Product Features

Excellent performance Widespread application

())

Excellent performance

The design of ARM +FPGA dual-core processor provides the faster arithmetic speed, more precise motion control and more stable process control. Supporting up to 12 channels 200K high-speed pulse output and 8 channels high-speed counting, liner interpolation and electronic gear function.

MU200-4AD

RUN

MEGMEET

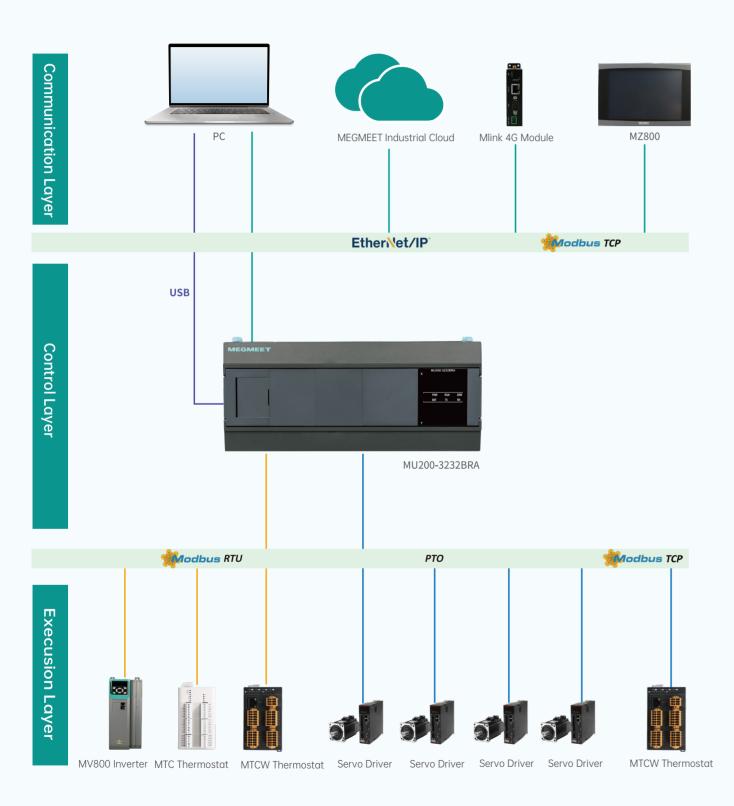
Ø

Excellent performance Widespread application Multiple Communication Convenient Networking

Flexible expansion Stable & reliable

Simplified programming Upgrading of function

Multi-mode Control


Widespread application

 \bigcirc

Since its release, MU200 has been used in 3C industry, packaging industry, hydraulic industry and other industries.

Multiple Communication Convenient Networking

Flexible expansion Stable & reliable

- Flexible expansion: supporting up to 12 expansion modules and 2 expansion cards to expand small-point IO and communication conveniently.
- Stable & reliable: with the horizontal expansion design, expansion modules are connected by pins,

MU200-3232BTA

MU200-8AD

which stabilize the connection and facilitate the disassembly.

MU200-4DA

MU200-0016ETN

Simplified programming Upgrading of function

Efficient programming environment

Supporting online modification and incremental compilation to improve compilation efficiency;

User-program can pinpoint errors for finding and maintenance easily.

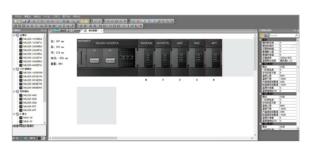

	·	284 10880 2087		_
Image: Section 1 Image: Section 1 Image: Section 2 Image: Section 2 Image: Section 2				
		200 200		
				 _
	272.8/012			
NEW NEW	850			
max max <td>STEAR .</td> <td>128 AH</td> <td></td> <td></td>	STEAR .	128 AH		
max max <td></td> <td></td> <td></td> <td></td>				

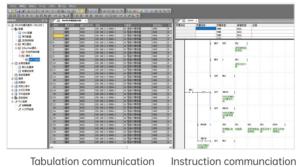
Image: Note:				
	*±##±6825%**			
maxim 2000 March 1000 March 10000 March 1000 March 10000 March 1000 March 1000 Ma	E015 E1:30			
	1428/29 112 100	20100.0 00 00000		
HERSS NORM HERS		New York Line Ver		
10255. 20 ¹⁴⁴ 10250	100			
Landon State and Mar 1				
	20.040	BOARD PART		
→ → → (250 DODE DEC) M25072 0(50), 0(50) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		120-00		
areant Differs, suffers	×			
(A Taken		
			and the second se	_

Modularization programming

Supporting a maximum of 8 main programs, cycle program, initialization program and 255 subroutines at the same time.

Convenient hardware configuration

The more convenient and intuitive configuration, the more flexible operation.



Multi-window display programming

Easy to monitor and search contrastively.

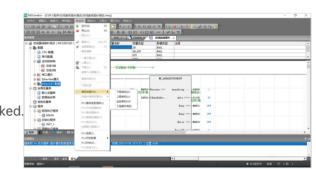
Tabulation communication

The communication tasks of serial port and Ethernet can be configured through table without invoking complex communication instructions.

High-level language programming

Supporting C language transaction program and user-defined function instruction.

* × I / Man ×	E COMMENT X
	<pre> *********************************</pre>


Safe and reliable with multiple protections

Providing the upload password, download password and monitor password.

The function of prohibiting formatting and prohibiting upload protect user program security from being cracked.

· REMU	Right	Right	#18.05	34	A Riter	1 AB-14	282.0	完整大型 1000 1000 1000	#H#25.57	3.6
		TIM	NIS.		~	-8-		 	8005. 814 J	-
				<u>.</u>		10800	_		_	
-	_ :	2>		54*		-0-	-	n 10	1	
3	V 528	50-		e 511+ 512		-8-	(*)	(227 16	1	
		28+		222*	1.		4 107 1			
			-							
							t RT	e 1		
3 V 20					× .			_	_	_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										

41 3 X							6 NT,1						
 ※ HERE (MCSO A) ※ (MCSO A)	完整地址	2828	公量大型 T1RF T1RF T1RF	898.55 905. 905. 905.	28	A 28		25246		の量先型 TERP TERP TERP	8983.5 555, 555, 555, 555, 555, 555, 555, 5	219	
- 2 04/m/34(14/94) - 2 3/f - 2 0/j/m - 2 0/j/m				(B(351))		A SIL	12870		ж	31.900 1045×10	1		
205055								(RF	30	81.200 52.52%	1		
6 MUN 8-2 Dec85 		-0-		र्म्स (ह	D			(Rr	ы	21.300 (2152-98)	1		
8-12 ST 100.1 8-12 ST 100.1								(107	×	21.400 1215410	1		
0 00 000765 00 INT 1 00 SKER(CER) 10 SER 10 SER 1		-5-		ŝta (B	P5			(Br	*	31.500 121394	1		
2 023/88 2 54259 2 63991 2 71088								(RF	37	20.400 12.600	1		
-9 USBAB		-	-	DAR RE	1			1 87	30	31.700	1		

Introduction of MU200 Main Module Ports

Industrial Applications and Solution

Packaging Industry—Sorting Packaging Baler



3C industry-Vertical Furnace

This system adopts MU200-3232BTA PLC, which interacts with upper machine via USB port to achieve data monitoring management and program modification. PLC also interacts the data with HMI using Ethernet protocol via network port, communicates with inverter and thermostat using Modbus RTU protocol via RS485 port, and controls servo drive through pulse for the aims of achieving accurate motion control and stable process control.

Model of MU200 Series

MU200 Main Module Specification

	Model	MU200-1616	MU200-24	124 M	U200-3232	MU200-4040			
Pro	duct Picture				22				
		MU200 BRA S	eries	MU200BT	A Series	MU200-4040BTA Series			
	High-speed Pulse Output	Non-supporte	ed 8 X	200KHZ puls	se output(Y0~Y7)	12 X200KHZ pulse output(Y0~Y13)			
Pulse Resoure	Single-phase Counting Channel	8X200KH;	z, AB phase a	ounting 42	X100KHz	8X200KHz, AB phase counting 4X100KHz high-speed filter parameter can be set independently			
	Max. Logical IO Point		Х	0~X1777	Y0~Y1777	7 (Octal)			
IO Resource	Digital Filter Function	X0-X7 adopt t others adopt t	he first grou he second gr	o digital fil oup digita	ter, the range I filter, the rang	of input filter constant is 0-60ms; ge ofinput filter constant is 0-60ms			
execution Speed	Simple Instruction				30nS				
	Program Power-down Permanent Protection				Yes				
Register	User Program				64k Step				
	Max. Number of Element Power-down Protection	Element N	/I、S、D、C、	T can be c	configured pow	ver-down protection function			
	Initialization Program				0~8				
Program Type	Sequential Function Program	1~8 a minimum of 1 sequential execution program							
	Cycle Execution Program				0~8				
	Subroutine				0~256				
	Script Program		0~409	6 support	ing standard C	language			
Data Block	Data Block Capacity		Element D	and R cai	n set a maximu	im of 12000			
	Input Relay X			1	024(Note 1)				
	Output Relay Y	1024(Note 1)							
	Auxiliary Relay M				8192				
	Special Auxiliary Relay SM	1536							
	Status Relay S	2048							
Number of Soft Element	Timer T	Total number 512 100ms precision, 210: T0~T209 10ms precision, 170: T210~T479 1ms precision, 32: T480~T511							
	Counter C		32-bit gene	, 200 points C200~C235, 36 points 307, 72 points					
	Data Register D	16000							
	Expansion Data Register R	16000							
	Partial Data Register LM								
	Partial Auxiliary Relay V				256				
	Indexed Addressing				256				
	Register Z Special Digital Register SD				1536				
	Forced Element Function			Sup	ported(Note 2)				

	Model	MU200-1616	MU20	0-2424	MU200-3232	MU200-4040			
Pr	oduct Picture				1				
		MU200BRA Se	ries	MU2	00BTA Series	MU200-4040BTA Series			
	External Interrupt		8	rising/fa	ling edge triggering	be supported			
	High-speed Count Interrupt				8				
la ta munt	Serial Port Interrupt				8				
Interrupt Resource	PTO Output Complete Interrupt		8			12			
	Interpolation Complete Interrupt				1				
	Passing Position Interrupt				6				
	Power Failure Interrupt				1				
	Communication Port of Expansion Card	1 channel			2 channels				
Serial Port Communication	Local Host			1-ch	annel RS485, 1-chanr	nel RS232			
	Communication Protocol		Мо	dbus mast	er/ Modbus slave/ fre	ee port/ Mcbus			
	Programming Debugging	Supporting to uploa	d and dov	wnload ope	eration through Ether	rnet, monitor program, online modifying			
	Supporting Multi-socket				5 Sockets				
Ethernet	Modus/TCP	1)supporting master/slave station 2)supporting configuration and networking communication							
	Free Port	1)transmit-receive of free protocol 2)supporting multiple Sockets							
USB Port	Programming Debugging	Supporting to up	load and	download	operation through US	SB, monitor program, online modifying			
Real-time Clock	Real-time Clock				Battery Preservatio	on			
Online Modification	Online Program Modifying				Supported(Note 3)			
	Password Type Setting	Upload	oassword	l, downloc	id password, and m	onitor password			
and User Program Protection	Upload Prohibition				Supported				

Note 1: The number of X, Y element are addressed based on octal, for example, the address X10 represents the 8th input point.

Note 2: The forced element function is provided to facilitate debugging and analysis of user programs and improve debugging efficiency. A maximum of 128 bit elements and 16 word elements can be forced simultaneously.

Note 3: The user program can be modified online during PLC operation.

MU200 Main Module Specification

	Model		MU200-1616	MU200-2424	MU200-3232	MU200-4040		
	Product Picture							
Electri	c Specification of Ir	nput Port						
	Mode of Signal Input		Source ty	pe/leakage type , user	r can choose through s	s/s port		
	Detection	Voltage		24	VDC			
Electric	Input Impe	dance		X0~X7 ports: 3.3KΩ,	other ports 4.3 K Ω			
Parameter	Input O	N	External	loop resistance less th	nan 400 º, input volta	ge > 15V		
	Input Ol	FF	External le	pop resistance greate	r than 24KΩ, input vol	tage < 5V		
Filter Function	Digital F	ilter	X0~X7 own digital filte	r function, filter time car	n be set by user program	ming(0~64ms adjusted		
Filler Function	Hardware	Filter	Other I/O ports own	hardware filter functi	on except X0~X7, filte	er time is about 10ms		
			X0~X7 can achieve	functions like high-sp	eed counting, interrup	ting, pulse capturing		
	High-speed Function	n	The coun	ting frequency of X0~	X7 port can up to 200	KHZ		
	Common Wiring Port	:		One of commo	on port is s/s port			
Electric	Specification of O	utput Port						
	Loop-power Ra	ted Voltage		5~24	4VVDC			
	Electric Iso	lation		Optocoup	oler isolation			
	Motion Indication Conduction Impedance			LED lights up when	optocoupler be driver	1		
				Less th	an 0.3Ω			
	Min. Lo	ad		5mA(5~	~24VDC)			
Transistor Output Port	Max. Output	Frequency		200	KHZ			
	Max. Output Current	Resistance Load		0.3A/	1 point			
	Max. Output current	Inductive Load		7.2W/	24VDC			
	ON Respon	se Time		0.5mc MAX(1	00mA/DC24V)			
	OFF Respon	ise Time		0.51115 MAX(1	00111A/DC24V)			
	Output Comr	non Port		One group wi	th 4 channels			
	Loop-power Rat	ted Voltage		5-30VDC	C/220VAC			
	Electric Is	olation		Relay is	olation			
	Motion Inc	dication		LED lights up whe	n relay be closed			
	Conduction I	mpedance	Less than 0.3Ω					
Relay Output Port	Min. L	oad	/					
Suparion	Max. Output	Frequency	1HZ					
	Max. Output Current	Resistance Load		2A/	channel			
		Inductive Load		80VA@	220Vac			
	ON Respons	se Time		No greater tha	in 10ms			
	OFF Respons	se Time		no greater the				
	Output Com	mon Port		One group wi	th 4 channels			

Expansion Card Specification

Мо	odel	MUE-2AD	
Product	Picture		
Product D	escription	2-channel analog quantity input	1-cha
Range of Analo	og Quantity Input	Vo	ltage:
Digita	Input		
Reso	lution		5m\
Convers	ion Speed		
Conversio	n Precision		
Input	Voltage	50	0KΩ
Impedance	Current	25	0ΚΩ
Range of Analog	g Quantity Output	Vo	ltage:
Min. Load	(Voltage)	1	
Max. Loa	d(Current)	/	
Mo	del	MUE-4X	
Product	t Picture		
Product	Description	4-point 24VDC input	2-poir
Input	Mode	Source typ	e/leak
Input Volt	age Level	24VDC(-1	.5%~-
Port Fil	ter Time	1ms~64ms (default 8m	is, can
Input Im	pedance	4.	3KΩ
Signal F	requency		
Isolatia	n Mode		
Loop-con	trol Voltage	DC 5	V~24
Load	Current		
Min.	Load		
Open-path Le	eakage Current	/	
ON Respo	onse Time		
OFF Resp	onse Time		
Мо	del	MUE-RS485	
	t Picture		
Product	Description	RS485 communication expo	insion
Communi	cation Rate	1200、2400)、480
Bus P	rotocol	F	ree po
Terminal Mata	hing Resistance		
	on Model		
15010110			

MUE	-2AM	MUE-2DA		
annel analog qu	uantity input/output	2-channel analog quantity output		
: 0~+10V 0~+5V 1~5V	Current: 0~20m 4~20m			
Default 0~	~10000			
nV(Voltage)/10	DuA(Current)			
2ms,	/channel			
±1% of	f the full scale			
		/		
: 0~+10V 0~+5V 1~5V	Current: 0~20m 4~20n			
	1K	Ω		
	500	Ω		
MUE	-4XY	MUE-4Y		
oint input 2-poir	nt transistor output	4-point transistor output		
kage type				
~+20%)		/		
n be adjusted	by software)	7		
11/117				
1KHZ(MAX) Optocoupler isolation				
4V		/		
TV	0 31/1 point:	/ 0.8A/4 points		
	5mA(DC			
		0.1mA/DC 24V		
	0.5ms MAX(10	00mA/DC24V)		
		MUE-RS232		
n card	RS485 com	munication expansion card		
800、9600、19	9200、38400、576			
ort protocol, I	Nodbus-RTU mast	er/slave		
/				
	uple isolation			

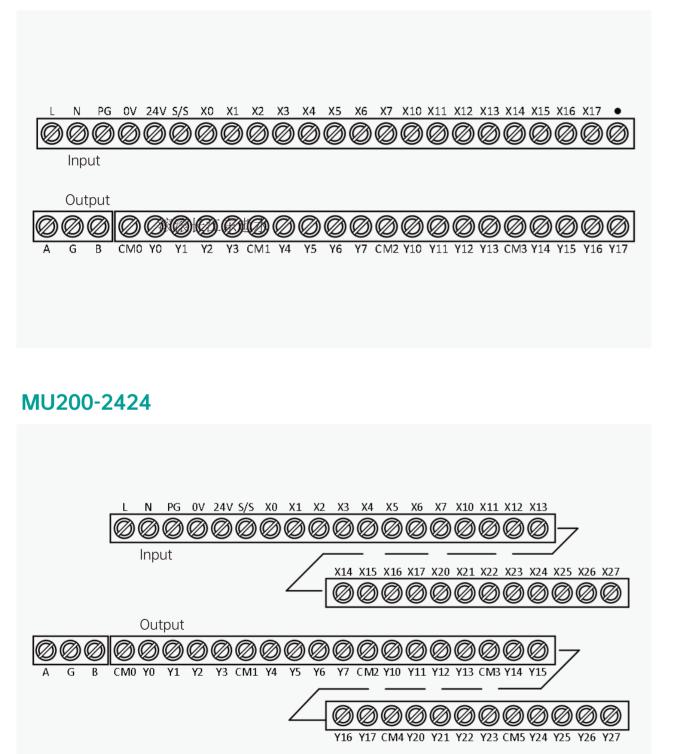
Expansion Module Specification

Model		MU200-0808ERN	MU200-0808ETN	MU200-1600ENN	MU200-0016ERN	MU200-0016ETN
Product Picture						
Mode of S	Node of Signal Input Source type/leakage type					
Detection	n Voltage		24VDC			
Input Re	sistance		4.3ΚΩ			1
Max. Input	Max. Input Frequency 1KHZ					
Hardwa	Hardware Filter About 0.5ms					
Digital	Filter		$1\sim$ 128ms, default 8	ms		
Loop-power Rated Voltage		Under AC250V/DC30V	5~24VDC		Under AC250V/DC30V	5~24VDC
Circuit Ir	sulation	Relay mechanical insulation	Optocoupler insulation		Relay mechanical insulation	Optocoupler insulation
Motion Indication		LED lights up when the relay output contact draws	LED lights up when the optocoupler is driven		LED lights up when the relay output contact draws	LED lights up when the optocoupler is driven
	h Leakage rent	1	Less than 0.1mA/24VDC		/	Less than 0.1mA/24VDC
Mir	n. Load	2mA(5VDC)	5mA(5~24VDC)		2mA(5VDC)	5mA(5~24VDC)
Max. Outpu	t Frequency	/	1KHZ		/	1KHZ
Max. Output Current Inductive Load		2A/1 point, 8 points in all at CM end total current is less than 8A	0.3A/1 point, 0.8A/4 points / 1.6A/8 points		2A/1 point, 8 points in all at CM end total current is less than 8A	0.3A/1 point, 0.8A/4 point 1.6A/8 points
		AC220V/80VA	7.2W/24VDC		AC220V/80VA	7.2W/24VDC
ON Response Time		20ms MAX	0.5msMAX (100mA/DC24V)		20ms MAX	0.5msMAX (100mA/DC24V)
OFF Response Time		20ms MAX	0.5msMAX (100mA/DC24V)		20ms MAX	0.5msMAX (100mA/DC24V)
Output Common Port		/ Each group is isolated			/	Each group is isolated

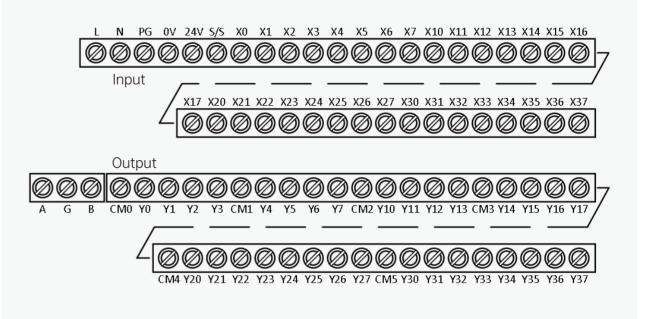
Expansion Module Specification

Model		MU200-4AD MU200-8AD		MU200-4DA		
Product Picture		MU200-6AD PRR RAI ESR		MU204-DA PRR BRA ERR		
Number of Analog C Output Point)uantity	4 points 8 points		4 points		
Range of Analog Quantity Output		-5~+5V 4~20MA 0~5V 1~5V		Voltage:-10~+10V Current:0~20mA 0~10V 4~20mA (0~10V and 0~20mA are synchronized (scale switched by upper computer)		
Resolution		5mV(Voltage)/10uA(Current)				
Number of ADC Bit		14bit 16bit		/		
Conversion Speed		8ms/4 channels 16ms/8 channels		2ms/ channels		
Sampling Precision		$\pm 1\%$				
Conversion Precision			$\pm1\%$ of the full scale			
Input Impedance	Voltage	400ΚΩ		/		
	Current	250				
	Voltage	,		1KΩ (Min.)		
Load Impedance	Current		500Ω (Max.)			
Isolation		The analog circuit and digital circuit are separated with a photoelectric coupler and the analog c hannels are not separated with each other.				
24V Power Consumption		30mA	45mA	20mA		

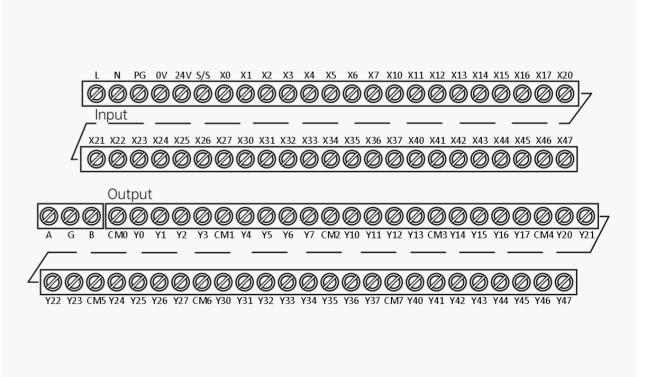
Expansion Module Specification

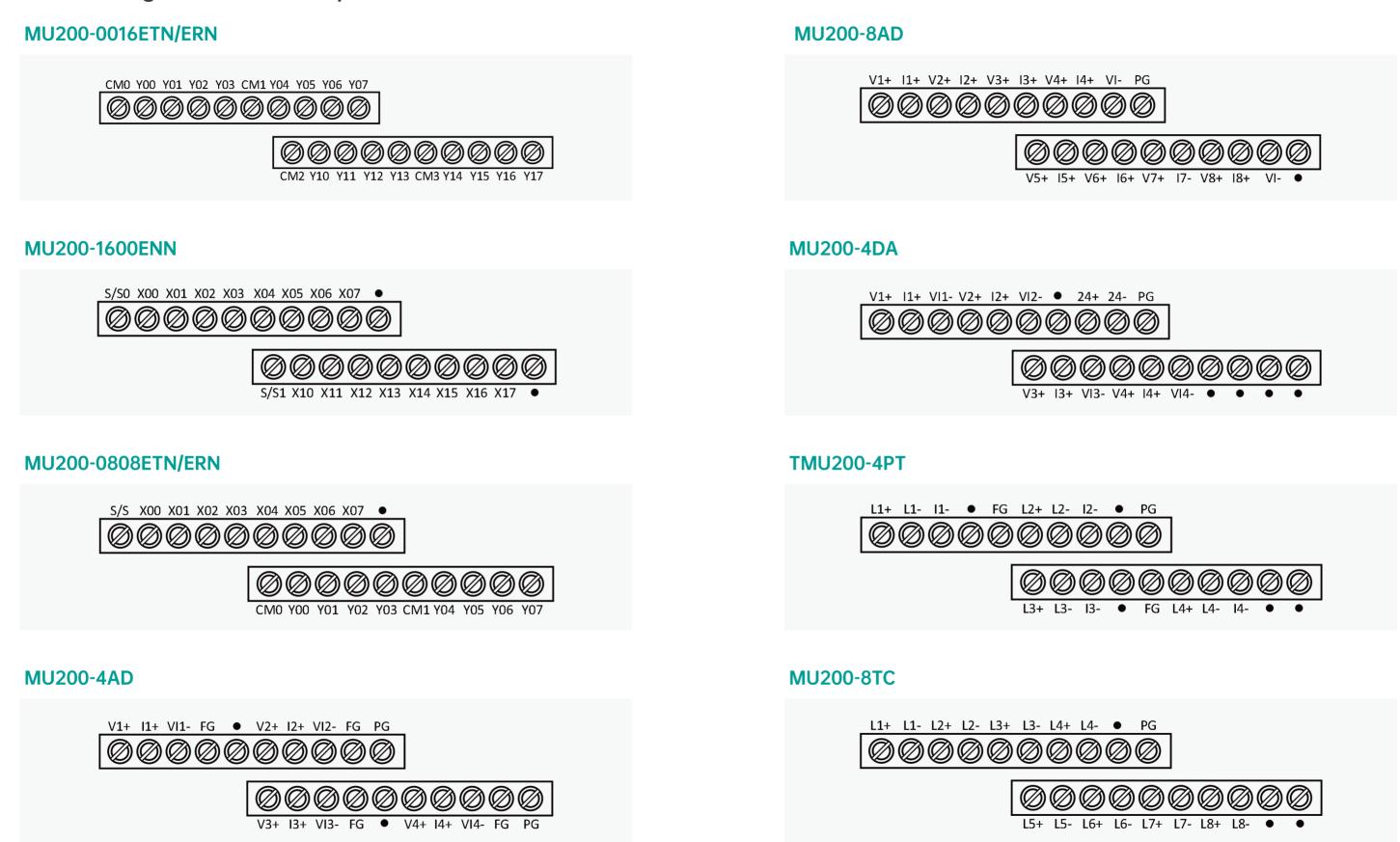

Model	MU200-4PT			MU200-8TC	
Product Picture	Musso 4/7 PA EQ E			Muzze arc Park BR BR	
Input Channel		4		8	
Sensor Type		PT100、CU50、CU	J100、0∼300R	J type, K type, R type, S type, T type, E type, N type B type thermocouple	
Display Mode		°C, °F		°C, °F	
Temperature Resolution		0.1°	C	0.1°C	
Sampling Cycle	250ms/4CH, 500ms/4CH, 1000ms/4CH can be chosen		00ms/4CH can be chosen	/	
Response Time	/			800ms/8CH	
Whole Precision	Full scale : $\pm 1\%$		±1%	±0.5% of F.S.(@25°C±5°C) ±1%of F.S.(@0∼50°°C)	
Sensitivity		/		0.1°C	
Measurement Range	PT100 Cu100 Cu50	"-200~850°C" "-50~150°C" "-50~150°C"	18.520Ω ~390.48Ω 78.4Ω ~164.27Ω 39.242Ω ~82.135Ω	/	
	NTC	/	0~300R		
Isolation Mode	The analog circuit and digital circuit are separated with a photoelectric coupler and the analog channels are not separated with each other.		and the analog channels	Channels are isolated from each other(400VDC) Analog and digital channels are isolated from each other(1500VDC)	
	Between digital circuit and ground (500VAC)			/	
Isolation withstand voltage	Between analog circuit and ground (500VAC)				
	Between digital circuit and analog circuit (500VAC)				
Function	First-order delay filter function Overrun detection function Slope over-alarm function Temperature compensation function		un detection function over-alarm function Line-broken detection, over-limit alarm, slop		
Bus 24V Power Consumption		≪30n	nA	≤30mA	

Model and Dimension of MU200 Series


Classification	Model	Description	Dimensions(L×W×H
	MU200-4040BTA	40-point DC24V input 40-point transistor output	246x90x85(mm)
	MU200-4040BRA	40-point DC24V input 40-point relay output	246x90x85(mm)
	MU200-3232BTA	32-point DC24V input 32-point transistor output	210x90x85(mm)
Main Module	MU200-3232BRA	32-point DC24V input 32-point relay output	210x90x85(mm)
Wall Would	MU200-2424BTA	24-point DC24V input 24-point transistor output	180x90x85(mm)
	MU200-2424BRA	24-point DC24V input 24-point relay output	180x90x85(mm)
	MU200-1616BTA	16-point DC24V input 16-point transistor output	145x90x85(mm)
	MU200-1616BRA	16-point DC24V input 16-point relay output	145x90x85(mm)
	MU200-0016ERN	16-point relay output	60x90x85(mm)
	MU200-0016ETN	16-point transistor output	60x90x85(mm)
IO Expansion Module	MU200-1600ENN	16-point output expansion module	60x90x85(mm)
	MU200-0808ERN	8-point DC24V input 8-point relay output	60x90x85(mm)
	MU200-0808ETN	8-point DC24V input 8-point transistor output	60x90x85(mm)
	MU200-4AD	4-channel analog quantity input	60x90x85(mm)
	MU200-4DA	4-channel analog quantity output	60x90x85(mm)
Analog Quantity Expansion Module	MU200-8AD	8-channel analog quantity input	60x90x85(mm)
	MU200-8TC	8-channel thermocouple	60x90x85(mm)
	MU200-4PT	4-channel thermal resistance	60x90x85(mm)
	MUE-4X	4-point input expansion card	38x46.4x11.5(mm)
	MUE-4Y	4-point output expansion card	38x46.4x11.5(mm)
	MUE-4XY	2-point input 2-point output I/O expansion card	38x46.4x11.5(mm)
	MUE-2AD	2-channel analog quantity input expansion card	38x46.4x11.5(mm)
Expansion Card	MUE-2DA	2-channel analog quantity output expansion card	38x46.4x11.5(mm)
	MUE-2AM	1-channel analog quantity input and 1-channel analog quantity output expansion card	38x46.4x11.5(mm)
	MUE-RS232	RS232 communication expansion card	38x46.4x11.5(mm)
	MUE-RS485	RS485 communication expansion card	38x46.4x11.5(mm)
	MUE-CAN	CAN communication expansion card	38x46.4x11.5(mm)

Terminal Diagram of MU200 Main Module


MU200-1616


MU200-3232

MU200-4040

Terminal Diagram of MU200 Expansion Module

